24小时故障咨询电话点击右边热线,在线解答故障拨打:400-996-1195
重庆指纹锁售后服务号码|24小时维修售后总部电话_海南橡胶:收到征地社会保险费补贴2.08亿元

重庆指纹锁售后服务号码|24小时维修售后总部电话

全国报修热线:400-996-1195

更新时间:

400电话:400-996-1195(点击咨询)
重庆指纹锁各号码《今日汇总》
重庆指纹锁各热线号码2025已更新(2025已更新)








重庆指纹锁维修电话:(1)400-996-1195(点击咨询)(2)400-996-1195(点击咨询)








重庆指纹锁24小时热线(1)400-996-1195(点击咨询)(2)400-996-1195(点击咨询)




重庆指纹锁各区点热线号码《今日发布》
重庆指纹锁电话








7天24小时人工电话为您、重庆指纹锁团队在调度中心的统筹调配下,线下专业及各地区人员团队等专属,整个报修流程规范有序,后期同步跟踪查询公开透明。








所有团队均经过专业培训、持证上岗,所用产品配件均为原厂直供,








重庆指纹锁各号码《今日汇总》2025已更新(今日/推荐)








重庆指纹锁电话区域:








北京市(东城区、西城区、崇文区、宣武区、朝阳区、丰台区、石景山区、海淀区、门头沟区 昌平区、大兴区)








天津市(和平区、河东区、河西区、南开区、河北区、红桥区、塘沽区、东丽区、西青区、)








石家庄市(桥东区、长安区、裕华区、桥西区、新华区。)








保定市(莲池区、竞秀区)  廊坊市(安次区、广阳区,固安)








太原市(迎泽区,万柏林区,杏花岭区,小店区,尖草坪区。)








大同市(城区、南郊区、新荣区)








榆林市(榆阳区,横山区)朝阳市(双塔区、龙城区)








南京市(鼓楼区、玄武区、建邺区、秦淮区、栖霞区、雨花台区、浦口区、区、江宁区、溧水区、高淳区)  成都市(锡山区,惠山区,新区,滨湖区,北塘区,南长区,崇安区。)








常州市(天宁区、钟楼区、新北区、武进区)








苏州市(吴中区、相城区、姑苏区(原平江区、沧浪区、金阊区)、工业园区、高新区(虎丘区)、吴江区,原吴江市)








常熟市(方塔管理区、虹桥管理区、琴湖管理区、兴福管理区、谢桥管理区、大义管理区、莫城管理区。)宿迁(宿豫区、宿城区、湖滨新区、洋河新区。)








徐州(云龙区,鼓楼区,金山桥,泉山区,铜山区。)








南通市(崇川区,港闸区,开发区,海门区,海安市。)








昆山市 (玉山镇、巴城镇、周市镇、陆家镇、花桥镇(花桥经济开发区)、张浦镇、千灯镇。)








太仓市(城厢镇、金浪镇、沙溪镇、璜泾镇、浏河镇、浏家港镇;)








镇江市 (京口区、润州区、丹徒区。)








张家港市(杨舍镇,塘桥镇,金港镇,锦丰镇,乐余镇,凤凰镇,南丰镇,大新镇)








扬州市(广陵区、邗江区、江都区.宝应县)








宁波市(海曙区、江东区、江北区、北仑区、镇海区,慈溪,余姚 )








温州市(鹿城区、龙湾区、瓯海区、洞头区)








嘉兴市(南湖区、秀洲区,桐乡。)








绍兴市(越城区、柯桥区、上虞区)








金华市(金东区,义乌)








舟山市(定海区、普陀区)








台州市(椒江区、黄岩区、路桥区)








湖州市 (吴兴区,织里,南浔区)








合肥市(瑶海区、庐阳区、蜀山区、包河
400电话:400-996-1195(点击咨询)
重庆指纹锁各号码《今日汇总》《今日发布》
重庆指纹锁各号码《今日汇总》(2025已更新)








重庆指纹锁维修电话:(1)400-996-1195(点击咨询)(2)400-996-1195(点击咨询)








重庆指纹锁24小时热线(1)400-996-1195(点击咨询)(2)400-996-1195(点击咨询)




重庆指纹锁各号码《今日汇总》【2025已更新列表】
重庆指纹锁电话








7天24小时人工电话为您、重庆指纹锁团队在调度中心的统筹调配下,线下专业及各地区人员团队等专属,整个报修流程规范有序,后期同步跟踪查询公开透明。








所有团队均经过专业培训、持证上岗,所用产品配件均为原厂直供,








重庆指纹锁中心2025已更新(今日/推荐)








重庆指纹锁电话区域:








北京市(东城区、西城区、崇文区、宣武区、朝阳区、丰台区、石景山区、海淀区、门头沟区 昌平区、大兴区)








天津市(和平区、河东区、河西区、南开区、河北区、红桥区、塘沽区、东丽区、西青区、)








石家庄市(桥东区、长安区、裕华区、桥西区、新华区。)








保定市(莲池区、竞秀区)  廊坊市(安次区、广阳区,固安)








太原市(迎泽区,万柏林区,杏花岭区,小店区,尖草坪区。)








大同市(城区、南郊区、新荣区)








榆林市(榆阳区,横山区)朝阳市(双塔区、龙城区)








南京市(鼓楼区、玄武区、建邺区、秦淮区、栖霞区、雨花台区、浦口区、区、江宁区、溧水区、高淳区)  成都市(锡山区,惠山区,新区,滨湖区,北塘区,南长区,崇安区。)








常州市(天宁区、钟楼区、新北区、武进区)








苏州市(吴中区、相城区、姑苏区(原平江区、沧浪区、金阊区)、工业园区、高新区(虎丘区)、吴江区,原吴江市)








常熟市(方塔管理区、虹桥管理区、琴湖管理区、兴福管理区、谢桥管理区、大义管理区、莫城管理区。)宿迁(宿豫区、宿城区、湖滨新区、洋河新区。)








徐州(云龙区,鼓楼区,金山桥,泉山区,铜山区。)








南通市(崇川区,港闸区,开发区,海门区,海安市。)








昆山市 (玉山镇、巴城镇、周市镇、陆家镇、花桥镇(花桥经济开发区)、张浦镇、千灯镇。)








太仓市(城厢镇、金浪镇、沙溪镇、璜泾镇、浏河镇、浏家港镇;)








镇江市 (京口区、润州区、丹徒区。)








张家港市(杨舍镇,塘桥镇,金港镇,锦丰镇,乐余镇,凤凰镇,南丰镇,大新镇)








扬州市(广陵区、邗江区、江都区.宝应县)








宁波市(海曙区、江东区、江北区、北仑区、镇海区,慈溪,余姚 )








温州市(鹿城区、龙湾区、瓯海区、洞头区)








嘉兴市(南湖区、秀洲区,桐乡。)








绍兴市(越城区、柯桥区、上虞区)








金华市(金东区,义乌)








舟山市(定海区、普陀区)








台州市(椒江区、黄岩区、路桥区)








湖州市 (吴兴区,织里,南浔区)








合肥市(瑶海区、庐阳区、蜀山区、包河

海南橡胶:收到征地社会保险费补贴2.08亿元

梦晨 发自 凹非寺量子位 | 公众号 QbitAI

ViT核心作者Lucas Beyer,长文分析了一篇改进Transformer架构的论文,引起推荐围观。

他前不久从谷歌跳槽到OpenAI,这次是在飞机上阅读论文并写下了分析。

这篇论文被他简写为DiffTranformer,不过不是Sora底层架构的那个Diffusion Transformer,而是不久前来自微软的Differencial Transformer。

论文中介绍,整体思路类似差分放大电路或降噪耳机,用两个信号的差值来滤除共模噪声,解决Transformer模型信噪比低的问题。

这篇论文发布时引起大量关注,但也面对一些质疑,在弹幕版alphaXiv上作者与读者进行了很多讨论。

Beyer起初也对这篇文章持保留态度,觉得“难道MHA中的两个注意力头不能学习到这些吗?”。

但经过近期和同行的一些互动,觉得不应该轻易下定论,重新看了一遍论文后,他改变了看法

我的最初印象被团队的实验彻底打破了,他们的实验非常公平和谨慎。

此外还有一个彩蛋:

大佬通常会用坐飞机的时间来打4把Dota 2游戏快速模式。

现在写这个帖子也不能当论文评审工作写进简历,是纯纯的贡献个人时间了,以后也不会常写。

总之先给大佬点赞。

大佬解读热点论文

Beyer评价这篇论文的核心创新非常simple和nice,可以用一句话概括。

将两个注意力头配对,然后执行(softmax(Q1K1) - λ*softmax(Q2K2)) V,其中λ是一个可学习的标量。

他认为这项研究的动机非常充分:随着上下文变长,(微小的)对不相关token的注意力之和可能超过对少数相关token的注意力,从而淹没它们。

这一洞见表明,随着输入长度的增加,经典Transformer可能越来越难以捕捉到关键信息。DIFF Transformer试图解决这一问题。

但他仍不确定对于训练充分的模型来说这是个多大的问题,希望在DIFF Transformer论文中有一些关于attention分布/熵的图表,以实际证明这个插图的合理性。

接下来,他指出了几个容易被忽视的细节:

与Figure1不同,DiffAttn实际上并没有对差值重新归一化。那么它究竟如何放大”相关”的分数呢?

Beyer建议论文中能提供更多实际训练的DIFF Transformer的分析图表。

λ的计算相当复杂,涉及两个可学习的指数函数之差,加上一些基线λ_init,在早期的层是0.1,后面又是0.8。

Beyer认为λ不一定需要是正值,并建议提供更多对可学习λ参数的分析。

每个注意力头的输出都经过了层归一化并乘以(1-λ_init),然后再concat并乘以WO,这里也需要更多图表来证明。

接下来看论文中大量的实验。研究者基本上分叉了了StableLM-3B-4E1T,称之为Diff-3B,作为基线模型进行比较。

可惜的是,基线模型只在其中3个数据集上报告了结果,其中2个Diff-3B的表现都相当好。

Beyer怀疑这个StableLM-3B是否真的是一个强基线。

在参数量和token数的缩放曲线上,DIFF Transformer乍一看很有前景。但仔细观察后,Beyer提出了两点质疑:

缩放曲线明显分为两组,在它们之间画一条线有点牵强。查看附录可知,研究者为较大的两个模型降低了学习率。这是否意味着他们遇到了不稳定性问题?

每次实验只用了10B个token训练,这个数量非常小。Beyer理解其中的计算资源限制,但仍然感到有点不安。

这些实验表明,在相同大小的情况下,DIFF Transformer性能会更好一些,并且训练时间相同。

然而,它的的推理速度也会慢一些(慢5-10%)。

Beyer提出最好能看到以计算量或实际时间为横轴的缩放曲线。

在长文本评测和对输入样本顺序的鲁棒性方面,DIFF Transformer表现出了明显的优势。

特别是在上下文学习的鲁棒性实验中,DIFF Transformer在不同的样本排列顺序下,性能方差远小于经典Transformer。

这表明它更不容易被输入的细微变化扰乱,而经典Transformer容易受到样本顺序的影响,在最好和最坏情况下表现相差很大。

总的来说,Beyer对这篇论文的看法有所改观:

研究者的实验非常全面和谨慎,的确展现了DIFF Transformer比单纯的”两个注意力头相减”更多的潜力。

这项工作展现了一些有前景的火花。它在其他人的训练任务中能否很好地复现、或带来帮助,还有待进一步观察。

Lucas Beyer是谁

12月初,Lucas Beyer与Xiaohua Zhai、Alexander Kolesnikov集体从谷歌被挖到OpenAI。

他们曾共同提出Vision Transformer,开创了Transformer在CV领域应用的先河。

据他个人官网中介绍,他在比利时长大,曾梦想制作电子游戏以及从事AI研究。

他在德国亚琛工业大学学习机械工程,并在那里获得了机器人感知和计算机视觉博士学位,2018年加入谷歌。

除了这次长文分析DIFF Transformer之外,他还经常对新研究发表一些短的评论,比如最近火爆的DeepSeek v3,他也提出自己的建议。

总之是一位非常值得关注的学者。

DIFF Transformer论文:https://arxiv.org/abs/2410.05258

参考链接:[1]https://x.com/giffmana/status/1873869654252544079

相关推荐: